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Abstract-This paper investigates the use of an 
agent-based framework for knowledge sharing 
and interoperability between autonomous sub- 
systems for mission software. The two  main 
goals of this work are the integration of 
applications into a common framework, and 
mission independent generalization of 
applications. The rationale for having multiple 
interacting agents is that a society of agents 
would provide added value by cooperation. One 
of the  main benefits is enabling the applications 
to share information and knowledge and 
coordinate the decision-making process at run 
time,  in an autonomous manner in the domain of 
space operations and control. Previous autonomy 
developments have resulted in efficient and 
robust inference engines, oriented mostly 
towards planning and scheduling activities, with 
little concern for a more general framework of an 
integrated mission operation system. We attempt 
to incorporate previous expertise in a more 
general way,  by extending it to a set of 
heterogeneous applications. The applications will 
adhere to the common shared background will  be 
generic, mission independent, and re-usable. The 
system architecture has been based on interacting 
agents. The applications are considered as 
knowledge based agents sharing their 
knowledge. Agents communicate their 
intentions, goals and  they also commit to achieve 
tasks on behalf of other agents. An agent is more 
than anything an entity that has goals to fulfill 
and resources to manage. These goals can be 
induced  by its needs or derived from contracts 
that the agent commits to achieve. The agents are 
assigned with  goals  and  they cooperate to 
achieve these goals. Goals can be specified 
beyond  the level of an isolated agent. 
Experiments have been realized using a given 
agent infrastructure, with a representative 
scenario, requiring the cooperation of different 
agents; initial results will be presented. 
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1. INTRODUCTION 

As space missions are continuously increasing in 
complexity and frequency, the demands upon the 
flight software systems and ground control 
personnel are becoming extremely complex. 
Each of the systems on-board of a spacecraft 
requires reference to a large volume of 
diagnostic and correction procedures to cope 
with the combinatorial process of analyzing 
possible malfunctions, or events occurring 
unexpectedly. The mission operations include 
navigation monitoring, fault diagnosis, scientific 
experiment management, communication 
management, etc. It is very important that the 
software systems designed to support these tasks 
be flexible, robust, and interactive when 
possible. Automation of these tasks can improve 
mission effectiveness, robustness, and lessen 
dependence on time and bandwidth-consuming 
remote intervention. 

Some of the recent advances in system 
architecture, mostly oriented towards 
autonomous control systems, have led to robust 
execution systems, or interleaved deliberative 
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and execution systems. In parallel, another trend 
has  been devoted to information systems with a 
higher degree of autonomy in obtaining and 
processing the information. Considerably less 
has  been done for a complex application with 
both such characteristics. 

Many of the existing software techniques have 
not satisfactorily handled the wide variety of 
problems arising in a space mission. An ideal 
system should be able to support the decision- 
making processes either automatically or in  an 
interactive way, depending on the circumstances, 
to  assist  with solutions in emergency situations, 
and  to recognize potential problems prior to 
exceeding alarm limits. It should be also able to 
integrate and filter different sources of 
information in solving a particular problem; in 
doing so, it should communicate with other 
systems to seek information. During such 
processes, the system should continuously 
reevaluate the spacecraft state and redirect the 
course of action to the most important problems. 
It is also necessary that the system be able to 
explain the reasons for its actions. 

Achieving this kind of behavior is sensibly 
beyond the capabilities of conventional systems. 
It requires the existence of a reasoning 
mechanism, which based on the system’s 
knowledge about the current situation and  about 
its own abilities can automatically determine a 
course of action. The system should be able to 
react appropriately and effectively to new 
situations in real time, and pro-actively use any 
available resources to solve the problem, 
including using the capabilities offered by some 
other available similar systems. 

We present a framework based on interacting 
agents, i.e. programs that encapsulate specific 
expertise, solving a problem that might  be 
beyond individual competence. The agent 
interaction must  rely on common and shared 
concepts and terminology for communicating 
knowledge across disciplines, and on a 
communication language. This technology 
allows the agents to interact at a higher level, 
expressing concepts related to the application in 
a general  way, independently of the exchange 
format. 

In this paper we discuss the motivations for such 
an approach and  its relevance to space mission 
systems and we review some initial experiments. 

2. AGENT-BASED  SOFTWARE 
ENGINEERING 

Agents and agent-based systems represent a new 
way  of thinlung, designing and implementing 
software systems. The agent-based approach 
brings together a large variety of concepts, 
models and tools that potentially improve the 
software engineering of many complex software 
systems. 

It is also important to say that no mention has  to 
be  made about the way the system is 
implemented. It can be realized using different 
technologies such as AI (Artificial Intelligence), 
object-oriented models, databases, etc. 

Software agent technology covers many different 
domains and different approaches. Accordingly, 
a variety of definitions have been produced for 
the term agent. There are comprehensive 
discussions on this subject in [Jennings 19981, 
[Bond 19881,  and [Genesereth 19971.  Although 
at  this moment, the definition of an agent still 
remains fluid, it is considered that there are some 
characterizing concepts that describe how  an 
agent should act. Conceptually, an agent 
represents an expressive abstraction for 
delegating tasks. The agent should act on behalf 
of its employer. It is generally agreed upon a set 
of basic characteristics that define an agent. The 
agent has to be: . intentional: having a goal or a set of goals 

(a purpose); . autonomous: to be able to initiate and 
determine its course of action without 
external intervention, once the purpose 
exists; . environment aware: possessing a 
representation of its environment, able to 
detect changes in that environment and also 
to  make changes to the environment 
(sometimes this property is called 
situatedness); . social: able to communicate with some other 
agents, humans or artifacts. 

It is the presence of all of these characteristics 
that distinguishes an agent-based system from 
other systems. There are also some other agent 
characteristics that could be added to the list, 
such  as adaptability, mobility, but they are not 
considered indispensable. 



In general, autonomous agents perform on behalf 
of other agents or humans, are able to solve 
problems on their own, may be geographically 
distributed, and communicate with each other in 
order to coordinate their behavior. The aspects of 
communication and cooperation are fundamental 
to  the definition of agents; these enable a group 
of agents to solve problems that are beyond the 
capabilities of any individual agent. This 
property, of group problem solving, 
differentiates the software agents from other 
types of software. 

The agent technology offers one of the most 
powerful and flexible abstractions for complex 
software systems. Such systems can be 
conceived as multiple communicating agents, 
which are independently pursuing their tasks or 
common goals. When interdependencies arise, 
the agents can communicate with one another 
and negotiate to handle them. Agents can use 
legacy software or any non-agent software 
systems. 

The decomposition has been proposed by several 
other approaches, starting with  modular 
programming, abstract data types, or more 
recently objects. For some applications, a higher 
level view, such as the agents as cooperating 
problem solving entities, represents a more 
appropriate alternative for the conceptualization 
process. 

3. SPACE MISSION OPERATIONS 

There are some domain characteristics that are 
mostly cited as being representative in choosing 
agent technology [Bond 19881: . data, control, expertise or resources are 

inherently distributed; . data system is naturally regarded as an 
organization of interacting components; . system contains existing components 
(legacy systems) which have to be 
integrated. 

A space mission operations system can be 
considered as a distributed software system. We 
can identify several ways of distributing data, 
control, expertise or resources: . distribution of data: the ground  mission 

planning sub-system has different data about 
the spacecraft than the on-board planning 
system which  has a very specific view 
about the same spacecraft; 

distribution of control, each sub-system is 
performing a set of different tasks. The sub- 
subsystem controlling the camera has 
different tasks from the navigation system; 
distribution of expertise, the telecom 
manager knows a lot about specific 
processes such as link management, which 
are very different from a science data- 
mining sub-system; 
distribution of the problem solving entities, 
the sub-systems are distributed 
geographically and in the outer space. The 
spacecraft is capable of sensing some 
portion of the overall data necessary to solve 
a problem, while the other part is available 
on the ground. 

For past missions, many of the sub-systems such 
as the attitude control, navigation, 
telecommunication management have been 
considered and operated mostly independently. 
The expertise on these sub-systems was equally 
separated into different groups. Members of the 
design teams might have looked differently at the 
same problem, using distinct models and 
sometimes implementing them using different 
software tools. However, in the design process, 
the team members shared considerable amount 
of knowledge, such as the knowledge about the 
spacecraft building characteristics, the solar 
environment, and some common mathematical 
formalism. 

As new, more complex and demanding missions 
are considered, the different disciplines become 
more interdependent. Such examples are flight 
through a planetary atmosphere, such as landing 
or ascending from a planet or the Earth, and 
spacecraft formation flying where the relative 
configuration and operation must  be closely 
controlled. The commonality between different 
sub-systems has to be represented in the design 
of a unified system that can be easily 
reconfigured to serve the needs of a wide set of 
future missions. 

Although in an integrated system one might still 
consider the possibility of unifying the models, 
representations and tools, the problem can be 
naturally modeled as a set of autonomous 
problem solvers, or agents, with their own 
resources and expertise. In order to solve a 
problem requiring all their combined distributed 
capabilities, they have to interact and possibly 
share some common knowledge to  get the task 



done, while maintaining their own expertise and 
ways  of exercising it. 

A simple example would  be the task  to take a 
picture and transmit it to the ground. A great part 
of the problem can be carried out independently 
by distinct agents, doing their job independently 
of one another and  in parallel, with a few 
information exchanges at a very  high level. 
Examples of exchanges might include a request 
made by the navigation agent to the camera 
agent to take a picture, or a request made to the 
telecom manager to transmit the picture to the 
ground after the picture was taken. 

Any  of the sub-systems of a space mission might 
justifiably address its problems in very particular 
ways,  using different models, making use of 
particular representations and reasoning methods 
to do their work efficiently. Furthermore, 
achieving a task is often a process of negotiation; 
decisions are made and changed based on the 
current internal state of the agents and the state 
of the environment. For instance, an agent might 
decide in favor of one of the available ground 
stations to downlink data for a particular 
satellite, depending on local factors as weather, 
or  might decide to skip one step in a procedure 
due to a failure of a particular equipment on the 
spacecraft, or change the course of action due to 
a change in the way  of thinking about a 
particular situation. These decisions, currently 
made  by a human factor, can be transferred to  an 
autonomous procedure having the necessary 
knowledge to make a safe decision. 

Developing software systems for space missions 
lead  to the existence of numerous legacy 
systems, very  well designed and developed to 
solve a particular problem. There is a challenge 
for an integrating system to  use  as  non- 
intrusively as possible such very  useful software 
artifacts. Sometimes the diversity was due to a 
design decision, or  was imposed by the software 
development tool that was employed. There was 
often the case that the application itself required 
an efficient approach, even if the solutions work 
reasonably only in a particular, restricted 
domain. Such representational differences 
between systems Constitute serious challenges 
when  they have to  be integrated in a more 
complex application. This ends up  in lack of 
consistency between different models and 
therefore prevents integration and 
interoperability between the constituent 
applications. The diversity should be taken as a 

given; there will always be preferences towards 
particular tool suites and integration 
environments, and there will be always a better 
solution for a given problem. Nonetheless, for 
systems that involve large and different segments 
of a project, or multiple projects, the processes 
that take place have to be coordinated. 

4. AGENT CONTROL 

In this paper an agent is considered as an entity 
described in terms of common sense modalities 
such as beliefs, or intentions. This intuitive 
approach has  its benefits for complex systems 
such  as distributed systems, robots, etc. where 
simpler, mechanistic descriptions might not 
exist. It has to be mentioned that what  makes 
agents out of hardware or software components 
is the fact that they are analyzed and controlled 
using these common sense, mental terms. 

Intuitively, each agent represents an independent 
problem solver. Accordingly, an agent has a 
general problem solving mechanism and more 
specialized problem oriented capabilities. The 
agent  has also to possess communication 
capabilities that make it able to communicate 
adequately with other agents. Agents are 
deliberative, in the sense that they use their 
knowledge in support of their reasoning. 

The agent structure we use has been conceptually 
inspired by Shoham’s agent-based programming 
approach [Shoham 19951, with some additions 
from the BDI (Beliefs, Desires, Intentions) 
model [Rao 19951, although the practical 
realization might differ in some aspects. The 
main  idea is an analogy to those conceptual 
categories proved useful in designing the agent 
control architecture. It is assumed that the agent 
has to accomplish complex tasks that require 
higher level abstractions extracted from its 
behavior in relation with  its environment, and 
with other agents. 

An agent-based framework includes the agent 
state, and  an interpreted programming language 
used  to define agents. The agent state is defined 
by four basic components: . beliefs: the information that the agent has 

about the environment and about some 
other agents; . capabilities: the tasks that are supposed to 
be accomplished by the agent under given 
circumstances; 



commitments: the tasks that the agent is 
committed to achieve (usually 
communicated to another agent) at a 
particular time; . intentions: the decisions about how  to act in 
order to fulfill its commitments . This 
concept is necessary because it is assumed 
that the agent wouldn’t  be able in general to 

Fig. 1 Agent State 

achieve all its commitments (desires). 

It is assumed that  this set of concepts are 
necessary to  model agent behavior such as: 
deliberation, reactivity, interaction, and are 
flexible enough to be used at different levels of 
the agent architecture to describe the agent state. 

To be realized, the above mentioned concepts 
have to be represented by data structures in the 
agent architecture. Besides what  was already 
mentioned, to complete the architecture, the 
agent might also have a repository of recipes 
(plans or rules) which specify the courses of 
actions that may be followed by the agent to 
achieve its intentions. 

The beliefs are updated from observations made 
of the world  and as the effect of the interactions 
with other agents, generating new capabilities 
and commitments on the basis of new beliefs, 
and selecting from the set of currently active 
commitments some subset to act as intentions 
(Fig. 1). An action has  to  be selected based on 
then agent’s current intentions and knowledge 
(beliefs plus plans/rules). 

The agent behavior can be expressed in a 
declarative agent language, which can be used 
by an interpreter that controls the agent 
execution cycle. 

The agent execution cycle consists of the 
following steps: processing new messages, 
determining which rules are applicable to the 
current situation, executing the actions specified 
by these rules, updating the mental model in 
accordance with these rules, and planning new 
actions. 

Although not  yet fully theoretically defined and 
still lacking clear definitions, these systems 
appear to have significant advantages in complex 
applications characterized by uncertainty, 
uncontrolled environmental change, and ongoing 
changes in the specification. One of the key 
advantages is that they offer a level of 
abstraction much closer to the specification of 
the real problem, where it is possible to  make 
statements like “Agent A wrongly believes that 
the antenna B is available for transmission”. 

In order to achieve coordination in a multi-agent 
system, the agents might have to negotiate, and 
they have to exchange information, i.e. they  need 
to communicate. In multi-agent systems, the 
possible solutions to the communication range 
from no communication at all, ad  hoc agent 
communication languages, and standard agent 
Communication languages. If the agent 
communication language (ACL) is primitive, 
requests, commands and complex intentions 
cannot be expressed. If an ad  hoc language is 
used, this makes the inter-operation non-trivial, 
and sometimes impossible. 

A more comprehensive description of the agent 
control process is shown in Fig. 2. 

We’ve started by using an existent agent 
communication language- KQML (Knowledge 
Query and Manipulation Language) [Finin 19921 
although the maturity of the agent languages has 
yet  to be proven. We prefer this approach instead 
of ad hoc communication solution like message 
passing, or using a blackboard (in fact no 
communication language at all) which make the 
issue of interoperation between different 
applications very difficult to solve. 

KQML is both a language and a protocol. It can 
be  viewed as being comprised of three layers: a 
content layer, a message layer and a 



communication layer. The content layer is the 
actual content of the message, in a particular 
representation language. KQML can carry any 
representation language, including logic 
languages, ASCII strings, etc. All  of the KQML 
implementations ignore the content portion of 
the message except to the extent that they  need  to 
determine the message limits. 

The message and communication layers encode 
features describing the lower level 
communication parameters, such as the identity 
of the sender and the recipient, a unique 
identifier associated with the communication 
process, and the kinds of interactions one can 
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Fig. 2 Agent Functional Structure 

have  with the KQML-speaking agent. This way, 

the sender can attach a type of the 
communicative interaction, known as a 
performative, such as an assertion, a query, or a 
command (tell, ask, achieve).  A KQML message 
conceptually consists of a performative, 
associated arguments including the real content 
of the message and a set of optional arguments 
describing the content in  a manner that is 
independent of the content language. For 
example, a query about the availability of a 
particular antenna might be represented as: 

[ask-all :content (AVAILABLE (?antenna)) 
:ontology MISSION-MODEL) 

5. SYSTEM  ARCHITECTURE 

The system architecture presented here is based 
on interacting agents. The applications are 
considered as knowledge based agents sharing 
their knowledge by using an agent 
communication language. Agents have to 
communicate their intentions, goals and also 
they  will commit to achieve tasks on behalf of 
other agents. An agent is more than anything an 
entity that has goals to fulfill and manages 
resources. These goals can  be induced by its 
needs  or derived from contracts that the agent 
commits to achieve. The agents are assigned 
with goals and they cooperate to achieve these 
goals. Goals can be specified beyond the level 
of an isolated agent. 

The infrastructure for such an open knowledge 
sharing system can contain different knowledge 
representation structures, intercommunication 
format(s), one or more knowledge manipulation 
languages, a common shared model or set of 
models (ontology) and a software framework to 
allow for the development of actual software 
systems. 

For example, there are shared elements of 
knowledge between the diagnoses of anomalies 
occurring on-board the spacecraft and the 
processing required to generate the necessary 
operational procedures needed to recover from 
such anomalies, based on the spacecraft design 
model. In order to control the run time 
(autonomous) re-planning process, certain 
knowledge needs to be shared dynamically. 
Identifying this type of knowledge is the first 
step to defining ontology to support the 
integration of a  set of generic mission support 
and mission operations tools that cooperate to 



solve operations tasks; ontology represents the 
application domain. 

The open knowledge based software architecture 
can be described by: . the representation structure; . the knowledge communication format; . the knowledge communication and 

. a common shared model of the domain 
manipulation language; 

(ontology). 

The representation structure is provided by the 
concept of virtual knowledge base. The 
applications can preserve their specific 
representations, while maintaining a virtual 
common representation structure. The virtual 
knowledge base represents a declarative 
representation of the agent's beliefs (what it 
knows about the environment), capabilities and 
goals. 

The knowledge communication format, as a 
"content language" might be  a formally defined 
generic language, or some private languages 
might be still considered for efficiency reasons. 
A "content language" is used  to express 
declarative knowledge within "performatives" 
(communication primitive acts such as ask, tell, 
etc.) provided by protocols by which knowledge 
bases, encoded in whatever representation can be 
accessed. The content language might  be as 
simple as specification of common libraries of 
objectsklasses. 

To support sharing of knowledge at execution 
time as opposed to the off-line incorporation of 
reusable modules, there need  to be protocols to 
control the exchange of knowledge according to 
the intentions of various interacting agents. This 
is the purpose of a knowledge communication 
and manipulation language. One can make a 
distinction between the "content" of a 
communication (e.g. "antennas are available") 
and  the "intention" of a communication. The 
same content can be communicated with 
different intentions. For instance, a question is 
communicated as "which antennas are 
available?" and a retraction as "it is no longer 
true  that the antenna X is available". The core set 
of performatives defines a basis upon  which 
higher levels of communication can be 
expressed, such as negotiation, cooperation, etc. 

It  is assumed that the agents communicate at a 
higher level of discourse, the contents of the 

communication being meaningful statements 
about the environment or about other agents. 
This differentiates agent communication from 
other computational entities such as method 
invocation in CORBA. 

The ontology proves to be essential, providing 
the applications with a common 
conceptualization of the domain, in our case 
spacecraft mission operations and control. Using 
a common description of the domain (the 
ontology) creates for the application a virtual 
shared model without the constraints that occur 
in centralized or uniform architectures. 

For example, a planning system has  been  based 
on a theory (model) in which plans are composed 
of "activities" which form "goals" with specific 
"resource dependencies" and the search for plans 
has been guided by "ordering heuristics" and 
"optimization criteria". If some other 
applications want to use this planning system, it 
is necessary to have a common understanding of 
what these concepts mean, preferably organized 
into a knowledge base with specific knowledge. 

Ontology is a concrete means to achieve 
knowledge sharing. Operationally, an ontology 
(a model of the domain) consists of a set of 
definitions of the representational terms used in 
the definition of the knowledge bases. The 
ontology implementation might vary from a re- 
usable shared library, to formally defining the 
ontology elements such as the knowledge 
representation models, or  a semantic network. 

6. AN INTELLIGENT AGENT 
MISSION EXPERIMENT 

To demonstrate the suitability of agent-based 
architecture for mission operations, we started 
with a simple but representative scenario where 
concepts such as model sharing, ontologies and 
interoperability will be adequately represented. 

Let's consider the telecom management 
modeling as an example. A telecommunication 
and radio navigation network, the Deep Space 
Network (DSN) supports the communication 
between the spacecraft and the ground stations. 
DSN receives telemetry signals from the 
spacecraft, sends commands to control spacecraft 
operations, generates the radio navigation data 
used to locate and guide the spacecraft, etc. (Fig. 



3). The telecommunication link between a DSN 
node and the spacecraft provides navigation data 
as well as various other communication data. 
The telecommunication links might be 
established using different areas of the 
electromagnetic spectrum; the communication 
system has  to support all the specific data types. 
There might be commonality in describing the 
data, or  using the same methods of analyzing the 
data. The common aspects need  to  be abstracted, 
so different agents can share the same 
knowledge. 

Fig. 3 A Telecommunication Scenario 

A simple scenario would  be  the transmission of 
mission goals from ground to the navigation 
agent. The navigation agent defers the 
telecommunication goals to a telecommunication 
agent. At its turn, the telecom agent has  to 

a Etherne 

decide what is the best choice from the available 
ground stations. 

An agent represents each ground station. 
Typically, the planning and scheduling have 
been coordinated for both partners- DSN and 
spacecraft, on the ground. Generalizing, any 
partner might have the ability to request data. 
The partner must be notified and must cooperate 
to configure the link properly for the requested 
data flow. The scheduling process has  to take 
into account constraints and requirements that 
are not the same as those for the 
telecommunication processes only. There will be 
probably constraints of this sort associated with 
the spacecraft-to-spacecraft links or other non- 
Earth links. 

This apparently simple scenario involves such 
issues as: . distribution of decision making processes 

between spacecraft, and ground complexes; 
interaction between applications developed 
with different purposes, that have to share 
knowledge to solve a particular problem; . local telecommunication performance 
analysis, at both ends (spacecraft and 
ground); . initiate activities by either participants; . negotiate solutions between agents; . identification of common knowledge to be 
shared by agents. 

The following agents have been identified as 
typical for the given scenario (Fig.4): 

Navigation Agent: ensures that the 
spacecraft maintains its trajectory, controls 
and monitors other on-board activities such 
as capturing images, achieving science 
experiments, etc. It receives a set of goals 
from the ground, and attempts to achieve 
them or transfer them to other agents; 

Telecom Agent: controls the on-board 
telecommunication processes between the 
spacecraft and the ground stations. It 
communicates also with the navigation 
agent to coordinate the downlink related 
activities; 
Ground  Complex System Agents: controls 
the telecommunication processes on the 
ground. There are as many agents as 
complex systems on the ground. 



The agents, which  might  be heterogeneous, share communication channel established between the 
some of their knowledge. They do this by spacecraft and the ground). Ontology can be 
interacting at run-time, based on a common set represented as a semantic network as shown in 
of models, grouped in a shared ontology. The Fig. 6, and implemented as a library of shared 
substrate of this process is the concept of virtual objects. 
knowledge base every agent has (Fig. 5). 
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Some possible elements in a navigationltelecom 
ontology include: antenna, ground complex, 
navigation, and telecom link (the instant 
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The agents can reason about what  to do based on 
their current state represented by beliefs, 
capabilities, existing commitments, etc. 

Beliefs represent the current state of the agent. 
Some examples of beliefs, given in pseudo-code 
as a pair  of  belief name and  belief value type, are 
given in Fig.7. 

Position 
Goal 

Velocity 
StartTime 
EndTime 

~ Duration 
~ Coordl 

(Coordl, Coord2) 
(String, StartTime, 
EndTime, Duration, Status) 
(Float) 
(Time) 
(Time) 
(Integer) 
(Float) 

Fig. 7 Beliefs Example 

The beliefs have to be expressed using RADL, or 
AgentBuilder current conventions. Essential is 
that one can explicitly declare and refer agent’s 
beliefs. 

The agent has  to perform actions, based on 
action’s necessary preconditions. The agent 
capabilities define the actions that the agent can 
perform provided their preconditions are 
satisfied. Capabilities, as opposed to beliefs, are 
given for the life of an agent. Beliefs can change, 

by adding new beliefs or updating existing ones. 
The actions can be either effect the environment 
in some way, or may be accomplish a 
communicative act. 

An agent can perform physical actions as 
pointing the spacecraft to a target, turning the 
camera on, achieve a science experiment, send 
data to the ground (downlink), etc. It also can 
send a message to some other agents asking for 
some information, may receive messages 
requesting goal achievement, and so on. 
Capabilities are pairs of action and preconditions 
to  be fulfilled for that action to take place. 

For example, consider the telecom Agent has  to 
downlink data. Some of the actions of this agent 
are analyze the telecom link, choose a ground 
complex to downlink, downlink. A capability for r Action: downlink 

Preconditions: on-board antenna ok, 
ground complex available, 
data rate satisfactory. 

Fig. 8  A Capability Example 

analyzing the telecom link is given in Fig.8: 

Capabilities are used by the agent to decide to 
commit to achieve a particular action. A 
commitment is an agreement, usually 
communicated to some other agent to perform a 
particular action at a certain time (Fig. 9). 

acceptheject downli 

Fig.9 Inter-agent Communication 

For instance, if the ground complex accepts the 
request to downlink, it agrees to perform the 
requested action at the requested time, based on 
the details of the request, its behavioral rules and 
its current mental model (beliefs, existing 
commitments, etc.). It is to be noted that a 



commitment does not guarantee that an action 
will  be performed; more precisely, a 
commitment is an agreement to attempt a 
particular action at a particular time if the 
necessary preconditions for that action are 
satisfied at that time. 

In general, successful execution of an action may 
be  beyond the agent's control. For example, a 
Ground Complex Agent  has committed to accept 
the downlink on behalf of a Telecom Agent. 
Even if the necessary preconditions are met  and 
Telecom Agent is able to initiate execution, the 
action  may still fail (e.g. a crash during the 
transmission). The Ground Complex Agent  must 
monitor the execution so it will  be able to  send a 
message back  to the Telecom Agent to report the 
success or failure of the commitment. 

The communicative actions such as asking for 
information, making something true about the 
environment, passing information to another 
agent, passing information to  all agents are 
expressed using KQML performatives: ask, 
achieve, tell, broadcasts, etc. A KQML message 
consists of a performative, the content of the 
message and a set of optional arguments. The 
performative refers to the contents of the virtual 
knowledge base of a remote agent. 

The arguments describe the content of the 
message independently of the content language. 
For instance, a message representing a query 
asking about the availability of a ground system 
complex might be represented as: 

(ask-all :content (downlink (?datarate)(?volume)) 
:language any-language 
:ontology navigation-1) 

In this message, the performative is ask-all, the 
content is (downlink (?datarate)(?volume)) and 
the ontology is identified by "navigation-1". The 
content might be expressed in any language that 
is understood buy the communicating agents. 

The inter-agent communication and 
interoperability is based on KQML. The agents 
might  be running on different platforms and 
might  be using different content languages for 
communication. 

The agent behavior is described by its behavioral 
rules. The behavioral rule extends the 
commitment rule by determining the course of 
action that the agent takes throughout execution. 

("Forwarding  downlink  selection" 

WHEN 
IF 
(BIND [VAR Goal <?g>]) 
(OBJ  [INST Goal <?g>.name] EQUALS 

[VAL  String  "image of Europa  on 
ground"]) 
(OBJ  [INST Goal <?g>.status] EQUALS  [VAL 
String  "accepted"]) 
(OBJ [VAR Agent <?agent>.agentInfo.name] 
EQUALS 

THEN 
(DO SendKqmlMessage  ([NEW  KqmlMessage], 

[VAR 
Agent<?agent>.agentInfo.name], 

[VAL String  "achieve"], 
[VAR Goal <?g>], 
[I, 
[I> [I, [I,  [I, [I)) 

[VAL  String  "Telecom"]) 

1 

Fig. 10 Behavioral rule- forwarding a goal 

An example of a behavioral rule is given in Fig. 
10. The rule is written using RADL (Reticular 
Agent Description Language), a proprietary 
agent language [AgentBuider 19981. 

RADL has extended the idea of a commitment 
rule to a general behavioral rule. Behavioral 
rules match the set of possible responses against 
the current environment described by the agent's 
beliefs and against the messages received from 
other agents. 

Behavioral rules can  be seen as production rules 
where the IF part matches against beliefs, 
commitments and intentions, and the WHEN 
portion matches against messages. The THEN 
portion represents agent's actions and belief 
changes performed in response to the current 
event, internal beliefs and external environment. 

The rule in Fig.10 states that if the goal "image 
of Europa on ground" exists as a belief, and  it 
was accepted as feasible (goal status is 
"accepted"), then it will be forwarded to the 
telecom agent within an "achieve" message. 



In this architecture, the agent interpreter 
continually monitors incoming messages, 
updates the agent’s internal model  and performs 
or initiates appropriate actions. The internal 
model contains current beliefs, commitments, 
intentions, capabilities and rules of the agent. 
Although rules and capabilities are static, the 
agent’s beliefs, commitments and intentions are 
dynamic and can change over  the  agent’s 
lifetime. 

7. FINAL  REMARKS  AND FUTURE 
WORK 

The two  main goals of this work are the 
integration of applications into a common 
mission framework, and mission independent 
generalization of applications. There are also 
several other ways that the agent-based software 
engineering might prove to be beneficial to 
mission operations: . increased flexibility, by providing advice 

and making independent decisions; . increased robustness by distributing decision 
making processes; 

8 increased system efficiency by achieving 
tasks in parallel; . integration by coordination, and  not  by 
common representation; . interoperability across heterogeneous 
languages and platforms; . integration of legacy systems. 

There have been several agent-based approaches 
to  system control and  in particular to spacecraft 
control or mission operations. We can cite the 
Remote Agent Experiment for automatically 
spacecraft controlling and commanding NASA 
DS1 mission [Bernard 19981,  or multi-agent 
approaches such as multi-operation support 
operations [Siewert 19961,  and handling 
malfunctions in the Reaction Control System 
(RCS)  of NASA’s space shuttle [Ingrand 19961. 
Some of them solve the problem using one single 
agent, such as for DS1, or in  the case of a multi- 
agent approach have  no explicit model for inter- 
agent communication or application integration. 
There is  some other multi-agent approaches with 
more elaborate models for cooperation between 
agents such as in [Tambe 19951. 

We hope that  the experiments with a given 
infrastructure for building multi-agent systems, 

will help to better understand fundamental issues 
such as the nature and content of a mission 
models, how to use them and how to express 
them in such a way that they might be re-used. 
By conceptually considering the mission system 
as a distributed process, the agent-based 
engineering certainly helps to better define the 
components of  an application and offers support 
for  an advanced problem solving entities 
framework. 

Further work should focus on defining mission 
ontology, refining the communicative models  to 
allow for complex interactions such as 
negotiation. 
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